Transportation Applications for Solid Oxide Fuel Cells - Auxiliary Power

June 1, 2000

Don McConnell
Corporate Senior Vice President
Associate Lab Director, Energy
Pacific Northwest National Lab

U.S. Department of Energy Pacific Northwest National Laboratory

Consumption of Petroleum by End-Use Sector, 1973-1998

- Transportation is major petroleum end-user
 - more people
 - more vehicles

Source: Transportation Energy Data Book: Edition 19

Transportation Fuel Economy

- Significant increase in overall vehicle efficiency has been realized:
 - more efficient engines
 - lightweight vehicle

Source: Transportation Energy Data Book: Edition 19

Automotive: Increasing Electrical Power Requirements

U.S. Department of Energy Pacific Northwest National Laboratory

Automotive Auxiliary Power Market Drivers

Peak Power Requirements	<u>kW</u>
Electric suspension	12.0
Heated windshield	2.5
Electric valve control	2.4
Electric power steering	1.3
Anti-lock brakes systems	0.67
Catalyst Heater	0.6
Diesel direct Injection	0.47
Electric coolant pump	0.3
Compartment Fan	<u>0.3</u>
Total Expanding Demand	20.5 kW

5 kW Vehicle Auxiliary Power: Impact on Estimated Fuel Usage

U.S. Department of Energy Pacific Northwest National Laboratory

Auxiliary Power:Ton-Mile Efficiency for Class 8 Truck

- Assume 5 kW continuous
- Assume a New York to Los Angeles, 60 mph
- 8 hours idle per day

Estimated Idle Fuel Usage per Year, Class 8 Truck

- Significant fuel saving as APU efficiency increases
- 250 days in a year
- 8 hours idle per day

Battelle

Mobile Electrical Power Generation

Engine/Generator

- Fuel Energy ->Mechanical Energy->Electrical Energy
 - Low overall efficiency = 12-17% peak, 5-7% idle
 - Inexpensive & reliable

Potential of Fuel Cells

- Fuel Energy -> Electrical Energy
 - High overall system efficiency > 40 %
 - Expensive, unreliable and (as yet) unproven
 - Environmentally friendly, reduced emissions

Fuel Cell Combined with Heat Pump

- Overall system efficiency >65%
- Full independence of auxiliaries from engine operation
- Minimizes emissions from auxiliaries

Advantages of Fuel Cell for Auxiliary Power

- Electricity without combustion
- Continuous production of electricity as long as fuel is supplied
- Environmentally clean
- High efficiency, > 60 % stack efficiencies
- Low Noise
- Modular and compact
- Potential for low cost

"Generic" Automotive APU Specification

Power

Rated voltage

Mass Target

Volume Target

Operation life

Cold Start Required

Warm Starts Required

Maintenance Required

Efficiency

Surface Temperature

5 kW net

42 Vdc

< 50 kg (0.1 kW/kg)

< 50 liter (0.1kW/liter)

>5000 hrs

>3000 times

SOFC < 10 minutes

>> 1000 hrs (30 ppm S)

> 40 %

< 45 degrees celsius

High Efficiency, Low Cost APU System

R&D Advances Required in:

- Solid Oxide Fuel Cell Stack
- Fuel Reformation
- Integrated Balance-of-Plant
- Thermal Control Subsystem
- Waste Energy Recovery Subsystem
- Power Electronics and Energy Storage Subsystem
- Entire System Cost must be driven down

Potential APU Markets

- Luxury Vehicles
- Recreational Vehicles
- Heavy Duty Trucks
- Short Haul Trucks
- Passenger Vehicles

